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ABSTRACT 
 
 
Recent advances in technology have allowed for Small Unmanned Aerial 

Vehicles (SUAVs) to employ miniaturized smart payloads such as gimbaled cameras, 

deployable mechanisms, and network sensors.  Gimbaled video camera systems, 

designed at NPS, use two servo actuators to command line of sight orientation via serial 

controller while tracking a target and is termed Visual Based Target Tracking (VBTT).  

Several Tactical Network Topology (TNT) experiments have shown high value of this 

new payload but also revealed inherent delays that exist between command and actuation 

of the pan-tilt servo actuators controlling the camera.  Preliminary analysis shows that 

these delays are due to a communication lag between the ground control station and the 

onboard serial controller, a data processing delay within that controller, and the 

mechanical delays of the gimbal.  This thesis applies system identification techniques to 

the servo controller system and considers the implementation of a Smith Predictor into 

the camera control algorithm in order to reduce the overall effect of the lag on the system 

performance. 
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I. INTRODUCTION  

A. OVERVIEW  
As the ability to communicate on a global scale becomes more commonplace, 

systems with high reliability, ease of use, and minimized response time are needed to 

maintain a technological advantage.  The use of Unmanned Systems has employed the 

benefits of such reliable communications while greatly evolving worldwide war-fighting 

capabilities.  Specifically, Unmanned Aerial Vehicles (UAVs) were developed for 

surveillance and reconnaissance missions.  They produce surveillance imagery from 

synthetic aperture radar, a forward looking infra-red (FLIR) and video cameras which can 

be distributed in real-time both to the front line soldier and to the operational commander,  

or even worldwide in real-time via satellite communication links.  This vital advancement 

relies immeasurably on the speed and accuracy of the information being sent over these 

technological links.  Because of the importance implicitly placed on the speed and 

accuracy of these systems, it is imperative that the underpinning mechanisms, required to 

create such systems, are worked out to maximize efficiency. 

 

B. MOTIVATION 
In Digital Control Systems (DCS), the transmission of command signals takes a 

finite amount of time to reach and be executed by its intended actuators.  This inherent 

lag can make effective control of such time delayed systems difficult and potentially 

introduce error into that system.  To address this characteristic of any DCS, a detection of 

this lag not only promotes a better understanding of the DCS, but it also becomes the 

preliminary step in the compensation of that delay. 

 

C. STATEMENT OF THE REAL-TIME TRACKING PROBLEM 
The gimbaled video camera system onboard the Small Unmanned Aerial Vehicles 

(SUAVs) developed at Naval Postgraduate School (NPS) is operated by two servo 

actuators which control the pitch (θ) and yaw (ψ) degrees of freedom of the camera’s line 

of sight (LOS).  This system, a component of the Visual Based Target Tracking (VBTT) 
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system, has three inherent delays that contribute to a decrease in the speed, accuracy and 

precision of the system as a whole; a communication lag between the ground control 

station and the onboard serial controller, a data processing delay within that controller, 

and the mechanical delays of the gimbal comprise the delay makeup.  Two of these 

delays addressed in this study are the mechanical delays of the gimbaled system 

combined with the servo actuators and the processing delay of the serial controller used 

to coordinate the stream of commands from the computer running the control algorithm.  

The communication lag element was determined to independent of the other two and was 

seen as “unmanageable” with this approach.  This thesis examines these delays in attempt 

to implement a compensation scheme. 

 

D. OBJECTIVES 
The NPS SUAV program goal is to provide a UAV equipped with Commercial 

off-the-shelf (COTS) sensors to serve as a surveillance and reconnaissance platform.  

Unlike the current UAVs used in military applications of today, the SUAV boasts a 

reduced price tag while maintaining the same capability to augment the common 

operating environment and situational awareness of the front line battle force further 

reducing the potential for individual harm. 

The Visual-Based Target Tracking (VBTT) system onboard the SUAV utilizes a 

filtering solution to estimate the position of a visible target.  This filtering solution relies 

on the ability to estimate the turn rate of the LOS connecting the UAV and target.  This 

capability makes position estimation possible through the following kinematic 

relationship for the turn rate of the LOS ( LOSλ ) 

 p
LOS

V
λ

ρ
=  1.1 

where pV  is a linear velocity vector of the aircraft and ρ  is the range from the aircraft to 

the target.  This relationship’s feasibility is due to an assumption made that the ground 

speed vector of the UAV, gV , can be controlled by the guidance algorithm [11] in such a 

way to be tangent to the line of sight (LOS) to the target; p gV V= .  The difference 
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between these vectors is termed the guidance error, η .  The control law employed in the 

VBTT guidance algorithm drives the value of η  to zero.  This concept, pictured in Figure 

1, shows that by accomplishing the task, flight path takes the shape of an orbit above the 

center of the target. 

 
Figure 1.   Qualitative Representation of Equation 1.1 (from Reference [12]). 

The delays presented in the above problem statement affect the performance of 

this filtering technique.  Accordingly, these delays will be the focus of this thesis.  First, 

the lags are modeled in order to identify and quantify them.  Next, system identification 

techniques are used to model the delays in the gimbaled controller.  Then, the identified 

delays are balanced through the implementation of a dead-time compensator (DTC).  The 

ultimate goal is to reduce the dead-time of the system in order to improve the tracking 

performance of the VBTT system. Finally, the implementation of the same tracking 

algorithm into a simple “target pointing” unit allows for a very effective solution for high 

gain antenna placement. 
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II. BACKGROUND 

A. OVERVIEW OF TACTICAL NETWORK TOPOLOGY (TNT) 
EXPERIMENTS 
The Tactical Network Topology (TNT) field experimentation program is a 

cooperative effort between the Naval Postgraduate School (NPS), USSOCOM and its 

component commands.  This program, a continuation of the Surveillance and Target 

Acquisition (STAN) program, conducts quarterly field experiments at the Center for 

Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) facility located at 

McMillan Field in Camp Roberts, CA.  Its focus is the exploration of network-based 

warfare capabilities and their integration into current real-world occurrences. 

 
B. TRACKING TASKS AND PLATFORMS 

1. Telemaster UAV – Real-Time Vision-Based Tracker 
The NPS’s tracking SUAV is a Senior Telemaster RC aircraft that was modified 

to meet payload requirements.  Seen in Figure 2, its main cargo is a gimbaled video 

camera system that is the initiation point of the Visual Based Target Tracking System 

(VBTT).  Once airborne, this aircraft is either in autonomous navigation mode (standard 

mode provided by Piccolo Plus Auto Pilot (AP)) or it might be controlled via wireless RF 

link from the ground control station (GCS) for various specific missions.  Using a 

traditional inner-outer loop control scheme, flight dynamics are managed by the onboard 

avionics system via the inner loop while aircraft navigation and target of interest orbiting 

are controlled from the GCS. 

 

  

Figure 2.   Modified Senior Telemaster UAV with Gimbal Detail. 
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The onboard gimbal is capable of carrying two cameras. It is located between the 

forward landing gear, also shown in Figure 2, and utilizes two HITEC digital servo 

actuators to provide movement to the high resolution, low light, black and white/color 

camera.  The servos utilized were the HITEC HS-5996TG (pan) and HS-5998TG (tilt).  

The range and centering was modified to optimize the resolution of the controller, and the 

dead-band width was minimized to maximize the pointing accuracy. The HITEC servos 

are digital which means they use an onboard micro-processor to convert a serial Pulse 

Width Modulation (PWM) signal into a servo position. Both servos are managed by a 

serial-to-PWM controller named the Serial Servo Controller (SSC-II) manufactured by 

Lynxmotion.  This controller offers an 8-bit resolution that is needed when tracking 

moving targets in a camera frame (later modifications of gimbal employ more versatile 

10-bit SSC controller).  The video, captured with the onboard camera, is transmitted via 

an onboard 2.4 GHz omni-directional antenna through a high gain ground-based 

directional antenna (described on page 8) to the Automatic Target Tracking (ATT) 

system at the GCS. 

 

 
 

Figure 3.   Digital Servo Actuator and Serial Servo Controller (SSC-32). 

 

2. Rascal UAV – Real Time Pointer 
As stated in the TNT experiment overview, network-based warfare capabilities 

are the focus of its ongoing research partnership.  Specifically, the Telemaster aircraft 
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must transmit surveillance video collected onboard to the GCS before it can be relayed to 

the established ITT mesh network that serves as the information conduit for the exercises. 

The Rascal UAV is the second aircraft controlled via the same GCS.  Unlike the 

Telemaster, its purpose is to maintain surveillance of a known target position, while the 

Telemaster UAV system provides near real-time target position estimation based on a 

filtering solution.  It uses mesh network communication to receive GPS coordinates of a 

target of interest.  These coordinates become the center of the aircraft’s new orbital path 

as it flies at a predetermined radius and altitude, specified by the GCS, while orbiting 

around this target.  The camera pointing algorithm uses the GPS position of the target and 

its own instantaneous position and orientation to calculate the correct pan and tilt angles 

of the gimbal in order to precisely point the camera at the target; this simple 

transformation from inertial to gimbal frame allows for the LOS inertial stabilization.  

The calculation algorithm represents a direct coordinate transformation of the target with 

respect to the aircraft’s continually changing its position and orientation making it a real-

time pointer which is algebraically shown below in Equation 2.1. 

 LOSc c b
LTP b LTP t UAV

LOS

R R R P P
θ
ψ
⎛ ⎞

= − ⇒ ⎜ ⎟
⎝ ⎠

 2.1 

The pan and tilt angles of the camera (2.1), thus continuously aligning the LOS with the 

target. 

 

                         
Figure 4.   Gimbaled System Onboard Rascal UAV a)  side – cutaway  b)  front. 

a) b) 
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The gimbaled system onboard the Rascal UAV, represents the second generation 

design and implementation.  Pictured in Figure 4 above, it is powered by the same digital 

servos controlled by a newer SSC-32 10-bit controller providing better resolution than the 

previous SSC-II.  The location of this system is also different than that of the Telemaster 

UAV.  It is located halfway back on the bottom side of the fuselage.  This positioning is 

aimed at precluding the landing gear wheel coming into view of the video image during 

operation.  The camera also boasts improvements over the previous setup.  Optical and 

digital zoom and color are among its additional features.  Additionally, update rates of the 

controller are set at 20Hz even though GPS is updated once per second; a modified dead 

reckoning (DR) algorithm was implemented to estimate the UAV’s position between the 

1 Hz samples. 

3. Antenna – Ground Based Pointer 
Most of the RF links utilized throughout the TNT experiments could benefit from 

the accurate pointing of high-gain directional antennas.  The video sent from the omni 

directional antenna onboard the Telemaster UAV is received at the GCS via a high gain 

directional antenna that is rotated with essentially the same above mentioned gimbaled 

system.  The GCS video antenna, depicted in Figure 5, has the same two-axis gimbaled 

system that allows for pan and tilt commands. At this time they correspond to the azimuth 

and elevation required for the precise alignment of the LOS between the antenna and the 

targeted aircraft. 
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flat panel antenna

Tilt Gear

Tilt Pivot Arm
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1/4−20 Nylon Lock Nut

Tilt Servo Mount
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120−tooth plastic
timing pulley

0.875 x 0.375
flanged bearing

 
Figure 5.   Schematic of Video Pointer Antenna. 

 

As with the gimbaled camera systems, COTS equipment was used wherever 

possible to minimize the cost.  The same digital servos employ the pan and tilt channels, 

again with the pan servo modified to allow for multiple revolutions.  Typically, these 

servos can provide up to about 170º of proportional travel.  In this case an SSC-II 

controller was used.  The controller is just 8-bit, meaning at best there are just 256 

possible servo positions.  While this is fine for tilt (±45° range – 0.35° resolution), for 

pan it is less than ideal (±180° range, 1.41° resolution).  This disadvantage is addressed in 

later antenna models, providing nearly 11-bit accuracy, or about 0.2° resolution.  The 
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pointer antenna used a PC104 single-board computer from Win-Systems; model PPM-TX 

with a 266MHz processor.  The PC included four serial ports and an Ethernet port.  One 

serial port was used to control the servos, and the Ethernet port was used to connect the 

tracker to the host computer via User Datagram Protocol (UDP) connection.  A schematic 

of the principal electronic elements and information flow of the pointer are shown in 

Figure 6. 

 

 
Figure 6.   Video Antenna Pointer Architecture. 

 

C. FEATURES OF VISUAL-BASED TARGET TRACKING (VBTT) AND 
POINTING 

1. Features of VBTT System 

Vision-Based Target Tracking (VBTT) is an emerging capability that would result 

in significant improvements of time on target and the ability to conduct detailed 

reconnaissance and provide simultaneous imagery.  Ongoing development and flight 
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testing of an Automatic Target Tracking (ATT) and position estimation system are 

research interests within the TNT program.  The system controls the UAV and the 

gimbaled camera system to maintain the centroid of the target identified by an operator in 

the center of the video image and provides an estimate of the target GPS position.   The 

target can be stationary or moving.  The VBTT system primarily addresses the following 

technological issues: 

• Coupling of a vision-based object tracking capability with the guidance 

and control algorithms for small, low-cost UAVs. 

• Development of guidance and control algorithms for vision-based tracking 

of a moving target. 

• Development of small, light-weight, and low-cost gimbaled system using 

primarily COTS equipment for high speed, precision pointing in 3D space. 

• Inertial stabilization of the LOS of the gimbaled system. 

• Estimation of the moving target position and velocity based on passive 

vision data acquisition. 

The VBTT system, shown in Figure 7, includes the modified Senior Telemaster 

UAV which acquires and transmits video via 2.4 GHz link to the ATT computer in real-

time.  During a mission, the operator of the ATT computer identifies the target of interest.  

The target appears inside of a small rectangle and is tracked by engaging the track mode.  

The position of the target in a camera frame is identified by the Cartesian coordinates of 

its centroid.  This information is processed by the control algorithm, residing in the GCS, 

which sends guidance commands to the UAV and controls the camera to keep the target 

in the center of the video frame. 

Three major components were developed and integrated into one system.  The 

first element included a VBTT capability that used imagery provided by a gimbaled 

camera.  Development of this module involved the design of a miniaturized gimbaled 

camera system, controller and integration of the ATT software developed by PerceptiVU, 

Inc [8].  Automated Motion Tracking (AMT) Software enables one to track an object in 

motion with a gimbaled camera as it moves within the camera frame.  PerceptiVU allows 



12 

the user to select and lock on a target displayed on a GCS monitor. In the configuration 

used in this experiment PerceptiVU provides coordinates of the centroid of the selected 

target. These coordinates are then employed by the control and filtering algorithms 

introduced in the NPS ground station. 

 

Gimbaled cameraGimbaled camera Piccolo avionicsPiccolo avionics

2.4GHz video link

ATT computerATT computerATT computerATT computer

Operator interfaceOperator interfaceOperator interfaceOperator interface

Pilot manual controlPilot manual controlPilot manual controlPilot manual control

900MHz Piccolo 
protocol

NPS ground stationNPS ground stationNPS ground stationNPS ground station

Full duplex serial

Gimbals 
control 

command

Full duplex serial

Serial link

Piccolo ground stationPiccolo ground stationPiccolo ground stationPiccolo ground station

Guidance command

Serial link

Gimbaled cameraGimbaled camera Piccolo avionicsPiccolo avionics

2.4GHz video link

ATT computerATT computerATT computerATT computer

Operator interfaceOperator interfaceOperator interfaceOperator interface

Pilot manual controlPilot manual controlPilot manual controlPilot manual control

900MHz Piccolo 
protocol

NPS ground stationNPS ground stationNPS ground stationNPS ground station

Full duplex serial

Gimbals 
control 

command

Full duplex serial

Serial link

Piccolo ground stationPiccolo ground stationPiccolo ground stationPiccolo ground station

Guidance command

Serial link

 
Figure 7.   Visual Based Target Tracking (VBTT) Architecture. 

 

The second component of the system includes the integrated UAV/camera control 

system.  It contains several task-specific control loops for the UAV guidance, navigation 

and control (GNC) as well as for steering the gimbaled camera. 

The GNC algorithm was designed to solve two principal tasks.  First, it had to 

guide the UAV around the target while keeping the target in the camera frame.  Second, it 

had to reduce the range estimation errors, coined Target Position Estimation, because the 

accuracy of the range estimation depends on the translational motion of the target in 

camera frame.  The estimation error is minimized when the target moves parallel to the 

camera image plane. 
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Depicted in Figure 8, the control structure represents two distinct missions.  The 

first one, when switch 1 is in the known target position, represents the mission of the 

pointing (“Rascal”) UAV.  Alternatively, when switch 1 is placed to receive the 

estimated target position, the figure represents the mission of the tracking (“Telemaster”) 

UAV.  Herein lays the ease for parallel technologies. 

 

Figure 8.   Control and Guidance Architecture. 

 

2. Features of the Pointing Application 
As mentioned previously, the directional pointing antenna takes on the same 

fundamental task as the Rascal UAV only applied to a slightly different set of initial 

conditions.  First, the original setup has the roles reversed.  In this case, the target is in 

motion and the gimbaled system is stationary.  This is easily transferable as the original 

algorithm requires two position coordinates and attitude in order to compute the azimuth 

and elevation angles required for precise LOS orientation. 
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III. APROACH 

A. SYSTEM IDENTIFICATION 

1. Overview 
The results from several past TNT experiments combined with recent thesis work 

revealed inherent delays that exist within the VBTT system.  Preliminary analysis 

connected these delays to the communication links, data processing time, and the 

mechanical delays innate to the design of the gimbaled system.  It became necessary to 

model the overall system in order to quantify these delays so as to account for them.  

Then the modeled system could be used toward the compensation of the analyzed dead-

time.  Two laboratory experiments were established and conducted to ascertain these 

quantities; the system identification of the Telemaster gimbaled camera control system 

and the observation of delay experienced in the 3DM sensor. 

The quality and precision of video acquired by the camera onboard the Telemaster 

UAV was directly connected to the success of its NPS-developed guidance and 

navigation (GNC) algorithm as well as its target position estimation solution.  Since this 

relationship was pivotal to the mission of the Telemaster UAV, the gimbaled camera 

control system was modeled in the laboratory.  An accurate representation of the process 

would confidently lead to a decreased system response time via compensation. 

An introduction of additional sensors into the system contributed to the 

aforementioned delays.  The addition of a solid state 3-axis (pitch, roll, and yaw) sensor 

to the video pointer antenna resolved orientation issues at startup (i.e. the need to orient 

the antenna to the north) and allowed for a mobile-based application for the “tracking” 

antenna.  This successful implementation also laid the foundation for parallel 

advancement with the feature of an inertially-stabilized gimbaled camera system onboard 

the UAVs. 

2. Assumptions 
While conceptualizing up the experiment, the proposal to use visual feedback 

from the PerceptiVU software was made.  The true processing speed of the PerceptiVU 

software was 30 Hz that is determined by the highest possible rate of the frame grabber 
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used (Matrox Meteor-II).  This was a reasonable assumption because the relative 

difference between the anticipated delays of the 3DM sensor (slow update rate sensor due 

to the technology used [10]) and the visual feedback (fast update sensor) was assumed 

significant enough to measure.  Furthermore, this assumption was believed to be 

transferable to the subsequent identification of the gimbaled system on the Telemaster 

UAV.  Finally, since the results of the system identification would merely provide 

starting point from which to further improve through actual adjustment and tuning of the 

compensated system, this assumption was made and the visual feedback received was 

presumed immediate. 

Two additional assumptions were made in the analysis. Since the communication 

delay mentioned earlier was not perceived as constant nor might be accurately modeled 

together with the gimbaled system, it was not considered during system identification.  

This communication lag, although directly affecting the system performance, was 

observed as an Electro-Magnetic Interference (EMI) issue.  The final assumption dealt 

with the separation of the two gimbaled directions, pan and tilt.  The proposed analysis 

assumed that the delays in each axis were independent and could be identified separately.  

This allowed for independent identification without the concern for a coupled system. 

3. Procedure 

a. Gimbaled Camera System Onboard Telemaster UAV 
This laboratory experiment was established to accurately model the 

gimbaled camera control system.  The experimental approach is outlined in Figure 9. 

 

Figure 9.   Telemaster Gimbal System ID and Implementation Outline. 
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The conceptual idea was to introduce a “step” disturbance to each axis 

independently and measure the response from the control system once initiated.  The 

disturbance was introduced by locking onto a target within the FOV of the camera about 

8° to 10° off of the origin of the camera frame.  Figure 10, shows the view of the video as 

seen through the PerceptiVU software on the ATT computer.  The left portion of the 

figure illustrates the “set up” portion of a trial whereas the right half of the figure shows 

the target acquired after the disturbance was introduced  (note - yellow box = control 

system idle / red box = control system initiated).  Approximately twenty trials for both 

pan and tilt directions were conducted.  Next, the recorded data from these trials was 

analytically examined to determine the system parameters.  Once identified, these 

parameters were introduced into the corresponding portions of the Smith Predictor that 

was added to the control loop.  The original “step” disturbance was applied again to the 

system in order to re-tune system gains. Finally, the variation in system response due to 

the dead-time compensation was recorded and evaluated. 

 

Figure 10.   Camera FOV in PerceptiVU software unlocked (left) and locked (right). 

 

b. Video Pointer Antenna 
The experiment modeling the delay experienced by the 3DM sensor was 

also organized and conducted in the laboratory.  The concept was to introduce a “step” 

disturbance to the base of pointer antenna and observe how the 3DM sensor measured 

that disturbance.  The 3DM unit is a solid-state 3-axis pitch, roll, and yaw sensor.  It 
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accomplished tilt sensing through orthogonal accelerometers and magnetic compass 

functions via orthogonal flux gate magnetometers.  It supported a maximum output rate 

of approximately 30 Hz. 

To achieve visual feedback, a small, fixed-aperture camera was affixed to 

the mount plate of the antenna.  The antenna was positioned at proper focal distance from 

a whiteboard mounted to the wall such that the LOS of the camera was perpendicular to 

the whiteboard.  The antenna was hinged to the table so that it could only be rotated about 

the y-axis.  Next, the field of view (FOV) of the camera in this location was measured in 

inches and outlined on the whiteboard, detailed in Figure 11.  The video from this camera 

was fed to the ATT computer through coaxial connection.  The output from the 

PerceptiVU software was feed back to the PC104 running the antenna control algorithm 

via RS232 serial connection.  Since the only measured quantities from this experiment 

were the output from the 3DM sensor and the visual feedback, the pointing control 

system was disabled.  This ensured representative visual data was passed to the ATT.  

The data collection was established in real-time such that both PerceptiVU and 3DM data 

could be synchronized with time.  This allowed for the analysis of the 3DM performance. 

 

 
Figure 11.   Camera Focal Length and Field of View. 
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The measured FOV and distance between the camera lens and the wall 

were used in the determination of the FOV of the camera in degrees as opposed to inches.  

These values were needed as conversion factors (from linear displacement to angular 

measure) to accurately model the system.  The precision of these measurements was next 

examined.  Using a standard measuring tape, the degree of accuracy was one sixteenth on 

an inch.  Incorrect measurements could potentially introduce error into the calculation of 

the camera’s FOV.  Assuming the maximum degree of measurement error was less than 

±1 inch, the introduced error was examined within the following relationship 

 2arctan
2FOV
D
f

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 3.1 

where FOVθ  represents the FOV of the camera, in degrees, D is the distance of the FOV, 

in inches, and f is the focal length of the camera, in inches. 

Due to the serial communication between the 3DM and the PC104, it was 

also necessary to evaluate the effect of the read buffer size on the performance.  The 

problem of performance evaluation for the serial communication is twofold.  On the one 

hand, the number of required internal loops necessary to process one package of raw data 

is a very explicit measure of the correctness of the serial interface (SI) tuning. 

 

Figure 12.   Degradation of the Effective Sampling Rate (From Reference [2]). 
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This means that if the frame length is much less than the package size, the 

parsing procedure will run multiple while-loops, thus extending the time load of the 

parsing routine.  In contrast, despite the fact that all bytes are processed and multiple 

function calls are issued, triggering the next scaling procedure, the effective sampling rate 

delivered by the parser will be lower than the original sampling rate of the sensor, shown 

in Figure 12.  Similarly, if the amount of bytes delivered at once to the parser is much 

less than the frame length, then the parser will require several runs to collect enough 

bytes for one complete frame [2].  It will also decrease the effective sampling rate of the 

SI.  Accordingly, buffer sizes of 64 and 1024 bytes were introduced to examine 

performance. 

To start the assessment, the algorithm was initiated and the antenna unit 

was rotated approximately -5º about the y-axis and then released.  This “fall” of the unit 

back to the horizontal LOS of the camera with the whiteboard approximated the step 

disturbance.  Approximately twenty trials were performed to account for the possibility 

of outliers.  The “step” disturbance could now be plotted together with the corresponding 

data from the 3DM.  Graphical analysis would expose the time delay and the time 

constant associated with the integration of this sensor into the pointer antenna allowing 

for compensation of initial angular orientation. 

 

B. DEAD RECKONING 
As mentioned previously, the slow update rate of GPS data combined with the 

possibility of communication lags and frequency confliction showed the need for dead 

reckoning algorithm to be added to the control scheme.  This would allow the system 

under consideration to advance target position based on the last updated velocity and 

attitude information. 
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Figure 13.   Adaptive Dead Reckoning (DR) Algorithm. 

Figure 13 shows a SIMULINK diagram which represents the algorithm 

incorporated into the control scheme.  It takes the last known inertial velocities and 

integrates them to get an estimated position.  Under normal operation with an accurate 

GPS message, a positional vector of [0; 0; 0] is added to the incoming velocities and the 

estimate passes through the logic, thus unaffecting the outcome.  On the other hand, if the 

GPS_updater subsystem is triggered, then the error between the last known true and 

estimated position is used to compensate for the accumulated error.  This DR logic allows 

the system to continue pointing along the last known path with improved accuracy until a 

new GPS message is delivered.  In the case of the ground pointer antenna, this feature, 

combined with the horizontal and vertical beam width of the antenna, will tolerate a 

noisier system and maintain a successful video link more consistently.  The Rascal UAV 

will benefit from this algorithm in that it will use its own velocity and that of the target to 

successfully estimate the position in the event of a momentary loss of GPS. 

 

C. DEAD-TIME COMPENSATION (DTC) 

1. Overview of techniques 

The dead-time introduced into the tracking system significantly deteriorates the 

system performance eventually causing a loss of target.  Although the already present 

proportional-plus-integral (PI) controller can handle a small amount of dead-time, it 

exhibits poor performance when the system displays longer dead-time.  Several methods 
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have been developed that address dead-time.  Such techniques range from predictive 

controllers that minimize a cost function, to a compensator designed for servo 

applications called a Smith Predictor, to complex optimal controller design and direct 

synthesis methods most suitable for continuous systems [5].  Each of these methods was 

evaluated weighing their weaknesses versus returns of implementation into the gimbal 

control algorithm.  The compensation technique chosen was proposed during the 1950’s 

by O. J. M. Smith, subsequently named the Smith predictor. 

The Smith predictor facilitates the removal of the time delay term in the closed 

loop characteristic equation [6].  This straightforward dead-time compensation (DTC) 

technique is the optimal controller for a delayed process for servo applications 

experiencing step disturbances often reducing the delay up to 30% [5].  The method is 

based on the idea that many higher order systems can be represented in first order lag 

plus time delay (FOLPD) form.  The compensator requires the system identification of 

three modeled parameters: a time constant, a velocity gain, and a dead-time.  Once 

identified, these parameters are inserted into their respective places in the compensated 

system.  The final step of implementation would require a re-tuning of the scheme to 

maximize the performance of the system at hand.  The simplicity of this technique 

combined with its suitability to the PI controller made it the most evident selection.  

Figure 14 shows a schematic of how a Smith Predictor is introduced to a system. 
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Figure 14.   Smith Predictor (from Reference [11]). 

 

The compensator consists of an inner loop that introduces two extra terms into the 

feedback path.  Since its addition runs in parallel to the system and essentially represents 

the identified Plant, it does not affect the overall transfer function of the system (if system 

ID was correct); shown in the Appendix.  The first part identified in the figure is the first 

box the shaded area which represents the dynamic first order system model.  It takes 

controller output and estimates what the process variable would look like without any 

disturbances.  This estimate term is added to the feedback path.  The second part shown 

in the above figure is the second box in the shaded area which represents the time delay 

term.  It is fed by the same controller input.  This block outputs a delayed but otherwise 

unchanged signal.  This delayed signal term is now subtracted from the feedback path, 

producing an estimate of the disturbances.  This procedure allows the controller to 

determine “ahead of time” what the next control effort should be.  The delay has been 

effectively moved out of the loop [11]. 

2. Implementation of Smith Predictor 
The Smith predictor was convenient to introduce into the existing PI gimbal 

control scheme. As identified in Figure 14, the required terms were appropriately added 

and subtracted from the feedback path of the existing controller.  Figure 15 shows the 
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SIMULINK model of the gimbal controller modified for the addition of the Smith 

predictor.  Outlined in the green box is the gimbal first-order-approximation-model while 

the red box delineates the time delay block inserted.  It is inside both of these blocks, that 

the parameters determined from the system identification will be included. Finally, 

shown in the dashed-line oval is a switch added to observe the performance of the system 

once tuned with the DTC as well as without the compensation.  It also allowed for ease of 

maneuver between the compensated and non-compensated systems.  The PI controller 

along with the tracking gains for both the pan and tilt channels were expected to be 

different depending on the status of the DTC. 

 

Figure 15.   Smith Predictor Implementation. 
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IV. RESULTS AND DISCUSSION 

A. GENERAL OVERVIEW 
During the most recent TNT experiments, TNT 05-4 and 06-1, all gimbaled 

components performed well.  The VBTT was successful in tracking both static and slow 

moving targets.  Actual tracking time was increased twofold over the uncompensated 

controller experiments from the previous year.  The position filtering solution 

convergence time also decreased substantially.  When the UDP flow, which transmitted 

the GPS message to the PC104 inside the ground pointer antenna, periodically dropped 

out, the adaptive dead reckoning algorithm augmented the tracking by keeping accurate 

LOS orientation movement smooth with the SUAV in flight. 

 

B. EVALUATION OF TRACKING PERFORMANCE IN A LABORATORY 

1. Analysis of Telemaster Gimbaled Camera Control System 
From the laboratory experiment, the system was modeled to arrive at the required 

parameters needed for the Smith predictor.  The average time delay was accepted as 

0.0665 sec.  The time constant and gains referring to the dynamic system modeling are 

listed below in Figure 16. 

 
Figure 16.   Resulting Smith predictor parameters. 
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The time delay was calculated by taking the average of all twenty experimental 

runs.  Once this value was acquired, the gimbal command output was then approximated 

as a first order system through a curve-fitting technique.  This first order system along 

with the calculated time delay were both placed back into the Smith predictor to measure 

its effectiveness. Twenty more experimental runs, that introduced the similar “step” 

disturbance, were conducted on the newly compensated system.  The resulting command, 

feedback, and tracking status data were collected and plotted in Figure 17. 

 

 
Figure 17.   Smith predictor effects on dead-time. 

 

Characterized by the thick magenta line, the average gimbal command after 

implementation of the Smith predictor shows a decrease of 0.0165s in system response.  

This difference between the uncompensated (red) and compensated (magenta) systems 

represents a 24.8% reduction in the dead-time of the system.  These results corresponded 

fairly well to the advertised dead-time reduction of up to 30% when the Smith predictor 
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was used.  Similar results were received for the tilt channel.  Consequently, the decision 

was made to consider the two channels, pan and tilt, equal in response and use the same 

calculated parameters for each. 

With this “initial guess” validated by positive results, it could now be adjusted to 

determine if a better performance of the real (vs. identified that is always “virtual”) unit 

existed.  The same laboratory setup in the Telemaster portion of Chapter 3 was performed 

again, however, this time on a moving pendulum target.  The use of a pendulum, which 

frequency of oscillations is fixed by its length, allows for precise measurement of phase 

shift between referenced and measured signals.  This alteration was initiated so that phase 

or effectiveness of the incorporated delay could be measured.  Since 0.0665 sec was the 

starting point from an average of the experimental trials; values on either side were 

examined in an attempt to optimize the delay value and tracking gains on a moving 

target.  Of the several trials accomplished, four delay values were chosen to represent the 

range that experimentally exhibited a departure from the accepted performance of the 

system. 
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Figure 18.   Delays Examined     a) 0.001s     b) 0.01s     c) 0.0665s     d) 0.1s. 

 

Shown above is a graphical representation of how each of the investigated delays 

shifts the phase of the system’s commanded response.  The phases for these four delays 

were also represented on a semi-log plot in Figure 19.  This relationship depicts a 

transitional point, conveniently occurring at the identified time delay of 0.0665 sec, 

where a larger value of delay will introduce an undesired effect on the system.  To the left 

of this transitional point, it stands that smaller values of delay will allow the system to 

more closely follow the actual motion of the target while the contribution to a phase shift 

is minimized.  This effectively increases the robustness of the system’s performance. 
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Figure 19.   Phase versus Delay relationship. 

 

2. Results from 3DM Integration into Video Pointer Antenna 
The data, produced from one of the “step” disturbance introduction trials, is 

characterized in Figure 20.  It shows the delayed response of the 3DM unit.  Also 

illustrated here is the error introduced due to measurement error.  This value was 

calculated to affect the output by no more than ±0.37°, also represented in Figure 20 as a 

shift in the PerceptiVU output. 
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Figure 20.   Graphical representation of observed delay of 3DM. 

 

Due to the serial communication between the control algorithm on the internal 

PC104 and the 3DM, the results of the read buffer experiment are presented in Table 1.  It 

compares the velocity gains and time delays between the responses from visual feedback 

and the 3DM sensor.  This showed that the optimal read buffer size for the current 3DM 

driver was 64 bytes. The delay for 1024 byte read buffer more than doubled that observed 

by the 64 byte read buffer. 
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Cycle VPVU V3DM δLAG VPVU V3DM δLAG

[#] [°/sec] [°/sec] [sec] [°/sec] [°/sec] [sec]
1 -2.50090 -3.69350 0.034236153 -2.0664 -5.0558 0.070974576
2 -4.98180 -3.93200 0.036358464 -2.4846 -2.8312 0.085584416
3 -3.83750 -5.21950 0.059113150 -4.2476 -2.8312 0.057010622
4 -4.11200 -5.16960 0.029851190 -3.1211 -2.8312 0.173706897
5 -1.93290 -5.35530 0.059849655 -1.7429 -2.8312 0.014476276
6 -3.60190 -2.70480 0.053817760 -2.6358 -2.8312 0.068074123
7 -1.40370 -5.60650 0.058634223 -5.1997 -2.8312 0.087618891

Mean -2.03370 -2.88011 0.030169145 -2.6873 -3.2840 0.069680725

64 byte read buffer size 1024 byte read buffer size

 
Table 1. Observed 3DM delays as a function of read buffer size. 
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V. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSION 
The introduction a Smith predictor dead-time compensation scheme greatly 

enhanced the performance of each of the systems examined.  Nearly maximized, the 

24.8% reduction allowed for a more robust tracking system on the Telemaster UAV.  

Target losses were drastically reduced, a more evenly transmitted video signal was 

received, and the target position filtering solution exhibited faster convergence times due 

to this implementation.  An interesting relationship between the time delay and the phase 

delay of the command actuation presented itself when a moving pendulum target was 

examined.  This connection exposed the range of effective delays useful in the DTC 

algorithm.  Furthermore, through finer adjustments of tracking gains the tracking 

subsystem became more responsive.  This concluded that the Smith predictor increased 

the robustness of the system. 

 

B. RECOMMENDATIONS 
The precision and accuracy of the surveillance gimbaled camera system onboard 

the UAV is instrumental to the accuracy and speed of convergence of the target 

positioning filter.  Because of this relationship, the VBTT system should be further 

examined to expose other possible errors prolonging position estimation convergence 

times and contributing to target losses.  The cleaner the data entering the filters, the 

quicker the convergence time will become.  Inertial stabilization of the camera’s LOS as 

well as video stabilization will help advance towards that goal.  Disturbance rejection 

could also facilitate these improvements. 
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APPENDIX BLOCK ALGEBRA OF DTC ADDITION 
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